Insulin-like growth factors augment steroid production and expression of steroidogenic enzymes in human fetal adrenal cortical cells: implications for adrenal androgen regulation.
نویسندگان
چکیده
The fetal zone is a unique adrenal cortical compartment that exists only during fetal life in humans and higher primates and produces large amounts of the adrenal androgen dehydroepiandrosterone sulfate (DHEA-S). Growth of the fetal zone is primarily regulated by ACTH, the actions of which are mediated in part by locally produced autocrine/paracrine growth factors. We previously demonstrated that one of these growth factors, insulin-like growth factor II (IGF-II), is mitogenic for cultured fetal zone cells and is produced in high abundance by these cells in response to ACTH. In the present study, we determined whether IGF-II also modulates the differentiated function of fetal zone cells. We examined the effects of recombinant human IGF-II and the closely related peptide, IGF-I, on 1) basal and agonist-stimulated [ACTH-(1-24), forskolin, or 8-bromo-cAMP] cortisol and DHEA-S production, 2) basal and ACTH-stimulated steady state abundance of messenger ribonucleic acids (mRNAs) encoding the steroidogenic enzymes cytochrome P450 side-chain cleavage (P450scc) and cytochrome P450 17alpha-hydroxylase/17,20-lyase (P450c17), and 3) basal and ACTH-stimulated steady state abundance of mRNA encoding the ACTH receptor. Basal cortisol (23.93 +/- 1.20 pmol/10(5) cells x 24 h) and DHEA-S (548.87 +/- 43.17 pmol/10(5) cells x 24 h) productions were significantly (P < 0.05) increased by IGF-I (2.3- and 1.8-fold, respectively) and IGF-II (2.8- and 1.8-fold, respectively). As expected, ACTH, forskolin, and cAMP markedly increased the production of cortisol by 26-, 10-, and 13-fold, respectively, and that of DHEA-S by 5.4-, 4.6-, and 5.5-fold, respectively, compared with basal levels. IGF-II (100 ng/mL) significantly (P < 0.001) increased ACTH-, forskolin-, and cAMP-stimulated production of cortisol by 2.4-, 4.3-, and 3.2-fold, respectively, and that of DHEA-S by 1.4, 1.6-, and 1.4-fold, respectively. IGF-I (100 ng/mL) had similar effects as IGF-II and significantly (P < 0.001) increased ACTH-, forskolin-, and cAMP-stimulated production of cortisol by 2.8-, 3.9-, and 3.1-fold, respectively, and that of DHEA-S by 1.3-, 1.6-, and 1.4-fold, respectively. The similar potencies of IGF-I and IGF-II suggest that the actions of these factors were mediated via a common receptor, most likely the type I IGF receptor. The effects of IGF-II on ACTH-stimulated steroid production were dose-dependent (EC50, 0.5-1.0 nmol/L), and IGF-II markedly increased the steroidogenic responsiveness of fetal zone cells to ACTH. With respect to cortisol production, IGF-II shifted the ACTH dose-response curve to the left by 1 log10 order of magnitude. IGF-II also increased ACTH-stimulated abundance of mRNA encoding P450scc (1.9-fold) and P450c17 (2.2-fold). Basal expression of P450scc was not affected by IGF-II. In contrast, basal expression of P450c17 was increased 2.2-fold by IGF-II and IGF-I in a dose-responsive fashion. Neither IGF-I nor IGF-II affected basal or ACTH-stimulated abundance of mRNA encoding the ACTH receptor, suggesting that the increase in ACTH responsiveness was not mediated by an increase in ACTH-binding capacity. Taken together, these data indicate that activation of the type I IGF receptor increases ACTH responsiveness in fetal zone cells by modulating ACTH signal transduction at some point distal to ACTH receptor activation. These data also indicate that locally produced IGF-II modulates fetal adrenal cortical cell function by increasing responsiveness to ACTH and possibly (based on its direct stimulation of P450c17 expression) augmenting the potential for adrenal androgen synthesis. Thus, activation of the type I IGF receptor on adrenal cortical cells may play a pivotal role in adrenal androgen production, both physiologically in utero and at adrenarche, and in pathophysiological conditions ofhyperandrogenemia, such as the polycystic ovary syndrome.
منابع مشابه
Androgenic potential of human fetal adrenals at the end of the first trimester
The onset of steroidogenesis in human fetal adrenal glands (HFA) during the first trimester is poorly investigated. An unresolved question is the capacity of the HFA to produce potent androgen DHT via conventional and/or the backdoor pathway(s) at the end of first trimester, when androgen-responsive organs are developed. Our aim was to explore steroidogenesis and the expression of steroidogenic...
متن کاملRegulation of steroidogenesis by insulin-like growth factors (IGFs) in adult human adrenocortical cells: IGF-I and, more potently, IGF-II preferentially enhance androgen biosynthesis through interaction with the IGF-I receptor and IGF-binding proteins.
Although the effect of insulin-like growth factors (IGFs) in fetal adrenocortical cells has been investigated extensively, the role of the IGF system in the adult human adrenal gland remains unclear. In the present study we investigated the effect of recombinant human IGF-I and IGF-II on cortisol, dehydroepiandrosterone sulfate (DHEA-S) and cAMP synthesis in adult human adrenocortical cells in ...
متن کاملDifferentiation of human embryonic stem cells and human induced pluripotent stem cells into steroid-producing cells.
Although there have been reports of the differentiation of mesenchymal stem cells and mouse embryonic stem (ES) cells into steroid-producing cells, the differentiation of human ES/induced pluripotent stem (iPS) cells into steroid-producing cells has not been reported. The purpose of our present study was to establish a method for inducing differentiation of human ES/iPS cells into steroid-produ...
متن کاملAbundance of DLK1, differential expression of CYP11B1, CYP21A2 and MC2R, and lack of INSL3 distinguish testicular adrenal rest tumours from Leydig cell tumours.
OBJECTIVE Testicular adrenal rest tumours (TARTs) are a common finding in patients with congenital adrenal hyperplasia (CAH). These tumours constitute a diagnostic and management conundrum and may lead to infertility. TART cells share many functional and morphological similarities with Leydig cells (LCs), and masses consisting of such cells are occasionally misclassified as malignant testicular...
متن کاملImmunolocalization of steroidogenic enzymes in equine fetal adrenal glands during mid-late gestation.
To elucidate the relationship between steroidogenic hormones and developing adrenal glands, we investigated the immunolocalization of steroidogenic enzymes in equine fetal adrenal glands during mid-late gestation. Fetal adrenal glands were obtained from three horses at 217, 225 and 235 days of gestation. Steroidogenic enzymes were immunolocalized using polyclonal antisera raised against bovine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical endocrinology and metabolism
دوره 82 5 شماره
صفحات -
تاریخ انتشار 1997